Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Viruses ; 16(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675960

RESUMO

Reactivation and infection with cytomegalovirus (CMV) are frequently observed in recipients of solid organ transplants, bone marrow transplants, and individuals with HIV infection. This presents an increasing risk of allograft rejection, opportunistic infection, graft failure, and patient mortality. Among immunocompromised hosts, interstitial pneumonia is the most critical clinical manifestation of CMV infection. Recent studies have demonstrated the potential therapeutic benefits of exosomes derived from mesenchymal stem cells (MSC-exos) in preclinical models of acute lung injury, including pneumonia, ARDS, and sepsis. However, the role of MSC-exos in the pathogenesis of infectious viral diseases, such as CMV pneumonia, remains unclear. In a mouse model of murine CMV-induced pneumonia, we observed that intravenous administration of mouse MSC (mMSC)-exos reduced lung damage, decreased the hyperinflammatory response, and shifted macrophage polarization from the M1 to the M2 phenotype. Treatment with mMSC-exos also significantly reduced the infiltration of inflammatory cells and pulmonary fibrosis. Furthermore, in vitro studies revealed that mMSC-exos reversed the hyperinflammatory phenotype of bone marrow-derived macrophages infected with murine CMV. Mechanistically, mMSC-exos treatment decreased activation of the NF-κB/NLRP3 signaling pathway both in vivo and in vitro. In summary, our findings indicate that mMSC-exo treatment is effective in severe CMV pneumonia by reducing lung inflammation and fibrosis through the NF-κB/NLRP3 signaling pathway, thus providing promising therapeutic potential for clinical CMV infection.


Assuntos
Modelos Animais de Doenças , Exossomos , Células-Tronco Mesenquimais , Muromegalovirus , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Muromegalovirus/fisiologia , Camundongos Endogâmicos C57BL , Macrófagos/imunologia , Infecções por Citomegalovirus/terapia , Infecções por Citomegalovirus/virologia , Pulmão/virologia , Pulmão/patologia , Pneumonia Viral/terapia , Pneumonia Viral/virologia , Infecções por Herpesviridae/terapia , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/imunologia , Pneumonia/terapia , Pneumonia/virologia
2.
J Agric Food Chem ; 72(17): 9782-9794, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597360

RESUMO

Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-ß, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.


Assuntos
Proteína DEAD-box 58 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Camundongos Knockout , Oligossacarídeos , Infecções por Orthomyxoviridae , Transdução de Sinais , Fator 3 Associado a Receptor de TNF , Animais , Camundongos , Oligossacarídeos/administração & dosagem , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/imunologia , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/imunologia , Pneumonia/imunologia , Pneumonia/prevenção & controle , Pneumonia/metabolismo , Pneumonia/virologia , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/virologia , Citocinas/metabolismo , Citocinas/imunologia , Citocinas/genética , Feminino , NF-kappa B/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia
3.
Eur Respir J ; 63(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514093

RESUMO

RATIONALE: Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES: To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS: In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS: GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS: GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Asma , Gasderminas , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Asma/metabolismo , Asma/genética , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Predisposição Genética para Doença , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/genética , Células Epiteliais/metabolismo , Linhagem Celular , Brônquios/metabolismo , Brônquios/patologia , Pneumonia/metabolismo , Pneumonia/genética , Pneumonia/virologia , Feminino , Pulmão/metabolismo , Pulmão/patologia
4.
Nature ; 606(7914): 585-593, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483404

RESUMO

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Assuntos
COVID-19 , Inflamassomos , Macrófagos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/patologia , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Inflamassomos/metabolismo , Interleucina-1 , Interleucina-18 , Pulmão/patologia , Pulmão/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/metabolismo , Pneumonia/virologia , Piroptose , Receptores de IgG , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
5.
Nature ; 603(7899): 145-151, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045565

RESUMO

COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications1,2. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs 3-5). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome5-17. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. 18). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS-STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Interferon Tipo I/imunologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , SARS-CoV-2/imunologia , Animais , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Macrófagos/imunologia , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/virologia , SARS-CoV-2/patogenicidade , Transdução de Sinais , Pele/imunologia , Pele/metabolismo , Pele/patologia
6.
Comput Math Methods Med ; 2021: 7238495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790254

RESUMO

OBJECTIVE: To uncover the application value of metagenomic next-generation sequencing (mNGS) in the detection of pathogen in bronchoalveolar lavage fluid (BALF) and sputum samples. METHODS: Totally, 32 patients with pulmonary infection were included. Pathogens in BALF and sputum samples were tested simultaneously by routine microbial culture and mNGS. Main infected pathogens (bacteria, fungi, and viruses) and their distribution in BALF and sputum samples were analyzed. Moreover, the diagnostic performance of mNGS in paired BALF and sputum samples was assessed. RESULTS: The pathogen culture results were positive in 9 patients and negative in 13 patients. No statistical differences were recorded on the sensitivity (78.94% vs. 63.15%, p = 0.283) and specificity (62.50% vs. 75.00%, p = 0.375) of mNGS diagnosis in bacteria and fungus in two types of samples. As shown in mNGS detection, 10 patients' two samples were both positive, 13 patients' two samples were both negative, 7 patients were only positive in BALF samples, and 2 patients' sputum samples were positive. Main viruses mNGS detected were EB virus, human adenovirus 5, herpes simplex virus type 1, and human cytomegalovirus. Kappa consensus analysis indicated that mNGS showed significant consistency in detecting pathogens in two samples, no matter bacteria (p < 0.001), fungi (p = 0.026), or viruses (p = 0.008). CONCLUSION: mNGS showed no statistical differences in sensitivity and specificity of pathogen detection in BALF and sputum samples. Under certain conditions, sputum samples might be more suitable for pathogen detection because of invasiveness of BALF samples.


Assuntos
Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Pneumonia/microbiologia , Pneumonia/virologia , Escarro/microbiologia , Escarro/virologia , Adulto , Biologia Computacional , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Masculino , Metagenômica/estatística & dados numéricos , Técnicas Microbiológicas , Pessoa de Meia-Idade , Pneumonia/diagnóstico , Estudos Retrospectivos , Sensibilidade e Especificidade , Análise de Sequência de DNA
7.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829979

RESUMO

Influenza is a respiratory virus that alone or in combination with secondary bacterial pathogens can contribute to the development of acute pneumonia in persons >65 years of age. Host innate immune antiviral signaling early in response to influenza is essential to inhibit early viral replication and guide the initiation of adaptive immune responses. Using young adult (3 months) and aged adult mice infected with mouse adapted H1N1 or H3N2, the results of our study illustrate dysregulated and/or diminished activation of key signaling pathways in aged lung contribute to increased lung inflammation and morbidity. Specifically, within the first seven days of infection, there were significant changes in genes associated with TLR and RIG-I signaling detected in aged murine lung in response to H1N1 or H3N2. Taken together, the results of our study expand our current understanding of age-associated changes in antiviral signaling in the lung.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/genética , Pneumonia/genética , Células A549 , Animais , Proteína DEAD-box 58/genética , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica/genética , Humanos , Imunidade Inata/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/patogenicidade , Influenza Humana/microbiologia , Influenza Humana/virologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/virologia , Pneumonia/microbiologia , Pneumonia/virologia , Receptores Toll-Like/genética , Replicação Viral/genética
8.
PLoS One ; 16(11): e0259732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780505

RESUMO

Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are bioactive particles that evoke beneficial responses in recipient cells. We identified a role for MSC-EV in immune modulation and cellular salvage in a model of SARS-CoV-2 induced acute lung injury (ALI) using pulmonary epithelial cells and exposure to cytokines or the SARS-CoV-2 receptor binding domain (RBD). Whereas RBD or cytokine exposure caused a pro-inflammatory cellular environment and injurious signaling, impairing alveolar-capillary barrier function, and inducing cell death, MSC-EVs reduced inflammation and reestablished target cell health. Importantly, MSC-EV treatment increased active ACE2 surface protein compared to RBD injury, identifying a previously unknown role for MSC-EV treatment in COVID-19 signaling and pathogenesis. The beneficial effect of MSC-EV treatment was confirmed in an LPS-induced rat model of ALI wherein MSC-EVs reduced pro-inflammatory cytokine secretion and respiratory dysfunction associated with disease. MSC-EV administration was dose-responsive, demonstrating a large effective dose range for clinical translation. These data provide direct evidence of an MSC-EV-mediated improvement in ALI and contribute new insights into the therapeutic potential of MSC-EVs in COVID-19 or similar pathologies of respiratory distress.


Assuntos
Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/virologia , COVID-19/patologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pneumonia/complicações , Pneumonia/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Humanos , Imunomodulação , Masculino , Modelos Biológicos , Pneumonia/patologia , Ratos Sprague-Dawley , SARS-CoV-2/fisiologia , Transdução de Sinais , Células THP-1
9.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607953

RESUMO

Chemokine production by epithelial cells is important for neutrophil recruitment during viral infection, the appropriate regulation of which is critical for restraining inflammation and attenuating subsequent tissue damage. Epithelial cell expression of long noncoding RNAs (lncRNAs), RNA-binding proteins, and their functional interactions during viral infection and inflammation remain to be fully understood. Here, we identified an inducible lncRNA in the Cxcl2 gene locus, lnc-Cxcl2, which could selectively inhibit Cxcl2 expression in mouse lung epithelial cells but not in macrophages. lnc-Cxcl2-deficient mice exhibited increased Cxcl2 expression, enhanced neutrophils recruitment, and more severe inflammation in the lung after influenza virus infection. Mechanistically, nucleus-localized lnc-Cxcl2 bound to Cxcl2 promoter, recruited a ribonucleoprotein La, which inhibited the chromatin accessibility of chemokine promoters, and consequently inhibited Cxcl2 transcription in cis However, unlike mouse lnc-Cxcl2, human lnc-CXCL2-4-1 inhibited multiple immune cytokine expressions including chemokines in human lung epithelial cells. Together, our results demonstrate a self-protecting mechanism within epithelial cells to restrain chemokine and neutrophil-mediated inflammation, providing clues for better understanding chemokine regulation and epithelial cell function in lung viral infection.


Assuntos
Quimiocina CXCL2/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , RNA Longo não Codificante/genética , Células A549 , Animais , Linhagem Celular Tumoral , Quimiocina CXCL2/metabolismo , Cromatina/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Humanos , Inflamação/prevenção & controle , Mediadores da Inflamação , Vírus da Influenza A/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/virologia , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , Estomatite Vesicular/imunologia , Estomatite Vesicular/patologia , Vírus da Estomatite Vesicular Indiana/imunologia
10.
Microbiol Spectr ; 9(2): e0055121, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704788

RESUMO

Respiratory viruses cause a substantial proportion of respiratory tract infections in children but are underrecognized as a cause of severe pneumonia hospitalization in low-income settings. We employed 22 real-time PCR assays and retrospectively reanalyzed 610 nasopharyngeal aspirate specimens from children aged 2 to 35 months with severe pneumonia (WHO definition) admitted to Kanti Childrens' Hospital in Kathmandu, Nepal, from January 2006 through June 2008. Previously, ≥1 of 7 viruses had been detected by multiplex reverse transcription-PCR in 30% (188/627) of cases. Reanalyzing the stored specimens, we detected ≥1 pathogens, including 18 respiratory viruses and 3 atypical bacteria, in 98.7% (602/610) of cases. Rhinovirus (RV) and respiratory syncytial virus (RSV) were the most common, detected in 318 (52.1%) and 299 (49%) cases, respectively, followed by adenovirus (AdV) (10.6%), human metapneumovirus (hMPV) (9.7%), parainfluenza virus type 3 (8.4%), and enterovirus (7.7%). The remaining pathogens were each detected in less than 5%. Mycoplasma pneumoniae was most common among the atypical bacteria (3.7%). Codetections were observed in 53.3% of cases. Single-virus detection was more common for hMPV (46%) and RSV (41%) than for RV (22%) and AdV (6%). The mean cycle threshold value for detection of each pathogen tended to be lower in single-pathogen detections than in codetections. This finding was significant for RSV, RV, and AdV. RSV outbreaks occurred at the end of the monsoon or during winter. An expanded diagnostic PCR panel substantially increased the detection of respiratory viruses in young Nepalese children hospitalized with severe pneumonia. IMPORTANCE Respiratory viruses are an important cause of respiratory tract infections in children but are underrecognized as a cause of pneumonia hospitalization in low-income settings. Previously, we detected at least one of seven respiratory viruses by PCR in 30% of young Nepalese children hospitalized with severe pneumonia over a period of 36 months. Using updated PCR assays detecting 21 different viruses and atypical bacteria, we reanalyzed 610 stored upper-respiratory specimens from these children. Respiratory viruses were detected in nearly all children hospitalized for pneumonia. RSV and rhinovirus were the predominant pathogens detected. Detection of two or more pathogens was observed in more than 50% of the pneumonia cases. Single-virus detection was more common for human metapneumovirus and RSV than for rhinovirus and adenovirus. The concentration of virus was higher (low cycle threshold [CT] value) for single detected pathogens, hinting at a high viral load as a marker of clinical significance.


Assuntos
Bactérias/isolamento & purificação , Hospitalização , Pneumonia/diagnóstico , Pneumonia/microbiologia , Pneumonia/virologia , Vírus/isolamento & purificação , Adenoviridae/genética , Infecções por Adenoviridae , Bactérias/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Metapneumovirus/genética , Reação em Cadeia da Polimerase Multiplex , Pneumonia/epidemiologia , Pobreza , Reação em Cadeia da Polimerase em Tempo Real , Vírus Sinciciais Respiratórios/genética , Sistema Respiratório , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Estudos Retrospectivos , Rhinovirus/genética , Vírus/genética
11.
Pathog Dis ; 79(7)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34543397

RESUMO

Influenza A virus (H1N1), a swine-origin influenza A virus, causes seasonal epidemics that result in severe illnesses and deaths. Leonurine has been reported to function as an anti-inflammatory agent with protective effects on nervous, urinary and cardiovascular systems. However, the therapeutic effects of leonurine on the pneumonia caused by H1N1 infection remain unclear. Hematoxylin and eosin staining was performed to evaluate the lung injuries of mice infected by H1N1. The amount of immune cells was analyzed by flow cytometry. Enzyme-linked immunosorbent assay was used to evaluate the alteration of multiple cytokines in lung tissues. Real-time quantitative polymerase chain reaction assay was performed to investigate the ribonucleic acid (RNA) levels of certain genes. The protein levels in toll-like receptor 4/nuclear factor kappa-light-chain-enhancer of activated B cells (TLR4/NF-κB) signaling were estimated by western blot assay. Leonurine treatment significantly inhibited the mortality caused by H1N1 infection. Leonurine treatment (60 mg/kg) alleviated the lung injuries caused by virus infection. The inflammatory cell accumulation and cytokine expression were inhibited by the leonurine administration. Leonurine inhibited the mRNA expression of pro-inflammatory cytokines in the lung homogenates at day 5 postinfection. Leonurine regulated the TLR4/NF-κB signaling in the lung homogenates of H1N1-infected mice at day 5 postinfection. Leonurine protects against H1N1 infection-induced pneumonia in mice.


Assuntos
Citocinas/metabolismo , Ácido Gálico/análogos & derivados , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , NF-kappa B/metabolismo , Infecções por Orthomyxoviridae/virologia , Pneumonia/virologia , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Ácido Gálico/farmacologia , Regulação da Expressão Gênica , Humanos , Influenza Humana/virologia , Lesão Pulmonar/virologia , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Suínos
12.
Clin Lymphoma Myeloma Leuk ; 21(10): e810-e816, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34393077

RESUMO

BACKGROUND: We previously reported elsewhere of a follicular lymphoma patient suffering from persistent COVID-19 pneumonia that was still ongoing at 2 months after onset. MATERIALS AND METHODS: We provide a follow-up report of the case along with a literature review of immunocompromised lymphoma patients experiencing prolonged COVID-19 infections. RESULTS: Although requiring a full 1 year, the presented case eventually achieved spontaneous resolution of COVID-19 pneumonia. Anti-SARS-CoV-2 antibodies could not be detected throughout the disease course, but COVID-19-directed T-cell response was found to be intact. The patient also developed secondary immune thrombocytopenia subsequent to COVID-19 pneumonia. We found 19 case reports of immunocompromised lymphoma patients with prolonged COVID-19 infections in the literature. All 5 patients who died did not receive convalescent plasma therapy, whereas resolution of COVID-19 infection was achieved in 8 out of 9 patients who received convalescent plasma therapy. CONCLUSIONS: We demonstrate through the presented case that while time-consuming, resolution of COVID-19 infections may be achieved without aid from humoral immunity if cellular immunity is intact. Immunocompromised lymphoma patients are at risk of a prolonged disease course of COVID-19, and convalescent plasma therapy may be a promising approach in such patients.


Assuntos
COVID-19/imunologia , Linfoma Folicular/tratamento farmacológico , Pneumonia/imunologia , Rituximab/uso terapêutico , SARS-CoV-2/imunologia , Trombocitopenia/imunologia , Antineoplásicos Imunológicos/uso terapêutico , COVID-19/virologia , Feminino , Seguimentos , Humanos , Hospedeiro Imunocomprometido/imunologia , Linfoma Folicular/complicações , Linfoma Folicular/imunologia , Quimioterapia de Manutenção/métodos , Pessoa de Meia-Idade , Pneumonia/complicações , Pneumonia/virologia , Remissão Espontânea , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Linfócitos T/virologia , Trombocitopenia/complicações
13.
Cells ; 10(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34440701

RESUMO

Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.


Assuntos
Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Pneumonia/imunologia , COVID-19/imunologia , Progressão da Doença , Humanos , Neutrófilos/microbiologia , Neutrófilos/virologia , Pneumonia/microbiologia , Pneumonia/patologia , Pneumonia/virologia
14.
J Med Virol ; 93(9): 5367-5375, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33913536

RESUMO

This study describes the baseline characteristics and treatment patterns of US patients hospitalized with a diagnosis of coronavirus disease 2019 (COVID-19) and pulmonary involvement. Patients hospitalized with pulmonary involvement due to COVID-19 (first hospitalization) were identified in the IBM Explorys® electronic health records database. Demographics, baseline clinical characteristics, and in-hospital medications were assessed. For evaluation of in-hospital medications, results were stratified by race, geographic region, age, and month of admission. Of 6564 hospitalized patients with COVID-19-related pulmonary involvement, 50.4% were male, and mean (SD) age was 62.6 (16.4) years; 75.2% and 23.6% of patients were from the South and Midwest, respectively, and 50.2% of patients were African American. Compared with African American patients, a numerically higher proportion of White patients received dexamethasone (19.7% vs. 31.8%, respectively), nonsteroidal anti-inflammatory drugs (NSAIDs; 27.1% vs. 34.9%), bronchodilators (19.8% vs. 29.5%), and remdesivir (9.3% vs. 21.0%). Numerically higher proportions of White patients than African American patients received select medications in the South but not in the Midwest. Compared with patients in the South, a numerically higher proportion of patients in the Midwest received dexamethasone (20.1% vs. 34.5%, respectively), NSAIDs (19.6% vs. 55.7%), bronchodilators (15.9% vs. 41.3%), and remdesivir (10.6% vs. 23.1%). Inpatient use of hydroxychloroquine decreased over time, whereas the use of dexamethasone and remdesivir increased over time. Among US patients predominantly from the South and Midwest hospitalized with COVID-19 and pulmonary involvement, differences were seen in medication use between different races, geographic regions, and months of hospitalization.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Broncodilatadores/uso terapêutico , Tratamento Farmacológico da COVID-19 , Dexametasona/uso terapêutico , Hidroxicloroquina/uso terapêutico , Pneumonia/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alanina/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , População Negra , COVID-19/etnologia , COVID-19/patologia , COVID-19/virologia , Feminino , Hospitalização , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Pneumonia/etnologia , Pneumonia/patologia , Pneumonia/virologia , Estudos Retrospectivos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Estados Unidos , População Branca
15.
J Neurovirol ; 27(3): 510-513, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33876412

RESUMO

Progressive multifocal leucoencephalopathy is a serious side effect of natalizumab, a humanized monoclonal antibody approved for the treatment of multiple sclerosis. Here, we report a case of unexpected worsening of natalizumab-related progressive multifocal leucoencephalopathy following COVID-19. After natalizumab discontinuation, a slight neurological improvement was observed, but, two months later the patient was admitted to the hospital because of neurological deterioration and COVID-19 mild pneumonia. Except for SARS-CoV-2 infection, no other potential factors of neurological worsening were identified. Thus, we pose the hypothesis that SARS-CoV-2 was instrumental in the progressive multifocal leucoencephalopathy deterioration.


Assuntos
COVID-19/complicações , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/efeitos adversos , Humanos , Fatores Imunológicos/efeitos adversos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/complicações , Pneumonia/virologia , SARS-CoV-2
16.
Can J Physiol Pharmacol ; 99(3): 328-331, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33657328

RESUMO

A total of 115 convalescent inpatients with COVID-19 were enrolled. According to the results of scans of lung lesions via computed tomography (CT), the patients were divided into mild, moderate, and severe groups. The clinical data of the patients were collected, including age, gender, finger pulse oxygen pressure, ventricular rate, body temperature, etc. The correlation between the clinical indicators and the lesions of high-resolution CT (HRCT) and bronchiectasis was analyzed. Among the 115 patients, 82 had no bronchiectasis and 33 had bronchiectasis. The bronchodilation-prone layers mainly included the left and right lower lobe of the lung. The probability of branching in the inflamed area was greater than that in the noninflamed area in patients with COVID-19. There were significant differences in gender, CT lesion range, and number of incidents of bronchiectasis between noninflamed and inflamed areas (P < 0.05). Moreover, there were significant differences in age, total proportion of CT lesions, volume of CT lesions, and total number of patients with bronchiectasis among the three groups (P < 0.05). CT lesion range was positively correlated with the total number of patients with bronchiectasis and patient age (respectively, r = 0.186, P < 0.05; r = 0.029, P < 0.05). The lesion range in HRCT images of lungs in patients with COVID-19 is correlated with bronchodilation. The larger the lesion, the higher the probability of bronchiectasis and the more incidents of bronchiectasis.


Assuntos
Bronquiectasia/patologia , Bronquiectasia/virologia , COVID-19/patologia , COVID-19/virologia , Pulmão/patologia , Pulmão/virologia , Pneumonia/patologia , Pneumonia/virologia , Adulto , Feminino , Humanos , Masculino , Estudos Retrospectivos , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X/métodos
17.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33574054

RESUMO

By the beginning of the global pandemic, SARS-CoV-2 infection has dramatically impacted on oncology daily practice. In the current oncological landscape, where immunotherapy has revolutionized the treatment of several malignancies, distinguishing between COVID-19 and immune-mediated pneumonitis can be hard because of shared clinical, radiological and pathological features. Indeed, their common mechanism of aberrant inflammation could lead to a mutual and amplifying interaction.We describe the case of a 65-year-old patient affected by metastatic squamous head and neck cancer and candidate to an experimental therapy including an anti-PD-L1 agent. COVID-19 ground-glass opacities under resolution were an incidental finding during screening procedures and worsened after starting immunotherapy. The diagnostic work-up was consistent with ICIs-related pneumonia and it is conceivable that lung injury by SARS-CoV-2 has acted as an inflammatory primer for the development of the immune-related adverse event.Patients recovered from COVID-19 starting ICIs could be at greater risk of recall immune-mediated pneumonitis. Nasopharyngeal swab and chest CT scan are recommended before starting immunotherapy. The awareness of the phenomenon could allow an easier interpretation of radiological changes under treatment and a faster diagnostic work-up to resume ICIs. In the presence of clinical benefit, for asymptomatic ICIs-related pneumonia a watchful-waiting approach and immunotherapy prosecution are suggested.


Assuntos
COVID-19/diagnóstico , Neoplasias Pulmonares/diagnóstico , Pneumonia/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Idoso , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , COVID-19/imunologia , COVID-19/virologia , Diagnóstico Diferencial , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/efeitos adversos , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/patologia , Lesão Pulmonar/virologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/virologia , Masculino , Nasofaringe/metabolismo , Nasofaringe/patologia , Metástase Neoplásica , Pandemias , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Pneumonia/virologia , SARS-CoV-2/patogenicidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Tratamento Farmacológico da COVID-19
18.
Med Sci Monit ; 27: e928837, 2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33580949

RESUMO

BACKGROUND Coronavirus 2 (SARS-CoV-2) was declared a pandemic by the World Health Organization (WHO) in March 2020. To further reveal the pathologic associations between coronavirus and hypoxemia, we report the findings of 4 complete systematic autopsies of severe acute respiratory syndrome coronavirus 2-positive individuals who died of multiple organ failure caused by severe hypoxemia. MATERIAL AND METHODS We examined the donated corpses of 4 deceased patients who had been diagnosed with severe acute respiratory syndrome coronavirus 2. A complete post-mortem examination was carried out on each corpse, and multiple organs were macroscopically examined. RESULTS The 4 corpses were 2 males and 2 females, with an average age of 69 years. Bilateral lungs showed various degrees of atrophy and consolidation, with diffusely tough and solid texture in the sections. A thromboembolism was found in the main pulmonary artery extending into the atrium in 1 corpse, and significant atherosclerotic plaques tagged in the inner wall of the aortic arch were found in 2 corpses. Two corpses were found to have slightly atrophied bilateral renal parenchyma. Atrophic changes in the spleen were found in 2 corpses. Notably, there were significantly expanded alveolar septa and prominent fibroblastic proliferation. CONCLUSIONS The laboratory data of these corpses showed a progressive decrease in blood oxygen saturation, followed by refractory and irreversible hypoxemia. Clinical and laboratory information and autopsy and histologic presentations of multiple organs showed insufficient air exchange due to abnormalities in the respiratory system, and reduced erythropoiesis in bone marrow may play a role.


Assuntos
Autopsia , COVID-19/patologia , COVID-19/virologia , Hipóxia/complicações , Hipóxia/patologia , Pneumonia/patologia , Pneumonia/virologia , SARS-CoV-2/fisiologia , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , COVID-19/complicações , Agregação Celular , Feminino , Humanos , Pulmão/patologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Muco/metabolismo , Miocárdio/patologia , Necrose , Pneumonia/complicações , Cavidade Torácica/patologia
19.
Cytokine ; 140: 155438, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33493861

RESUMO

BACKGROUND: Patients infected by SARS-CoV-2 can develop interstitial pneumonia, requiring hospitalisation or mechanical ventilation. Increased levels of inflammatory biomarkers are associated with development of acute respiratory distress syndrome (ARDS). The aim of the present study was to determine which cytokines are associated with respiratory insufficiency in patients hospitalised for COVID-19. PATIENTS AND METHODS: Data on 67 consecutive patients were collected between March 8 and March 30, 2020. PaO2/FiO2 ratio (P/F) was calculated at hospital admission. The following cytokines were analysed: interleukin (IL)-6, IL-1α, IL-18, tumour necrosis factor (TNF)-ß, macrophage colony-stimulating factor (M-CSF), macrophage migration inhibitory factor (MIF), soluble IL-2 receptor alpha (sIL-2Rα; CD25), IL-12ß, IL-3, interferon (IFN) α2a, monokine induced by gamma interferon (MIG), monocyte-chemotactic protein 3 (MCP3) and hepatocyte growth factor (HGF). RESULTS: P/F lower than 300 was recorded in 22 out of 67 patients (32.8%). P/F strongly correlated with IL-6 (r = -0.62, P < 0.0001), M-CSF (r = -0.63, P < 0.0001), sIL-2Rα (r = -0.54, P < 0.0001), and HGF (r = -0.53, P < 0.0001). ROC curve analyses for IL-6 (AUC 0.83, 95% CI 0.73-0.93, P < 0.0001), M-CSF (AUC 0.87, 95% CI 0.79-0.96, P < 0.0001), HGF (AUC 0.81, 95% CI 0.70-0.93, P < 0.0001), and sIL-2Rα (AUC 0.80, 95% CI, 0.69-0.90, P < 0.0001) showed that these four soluble factors were highly significant. All four soluble factors correlated with LDH, white blood cell count, neutrophil count, lymphocyte count, and CRP. CONCLUSION: IL-6, M-CSF, sIL-2Rα, and HGF are possibly involved in the main biological processes of severe COVID-19, mirroring the level of systemic hyperinflammatory state, the level of lung inflammation, and the severity of organ damage.


Assuntos
COVID-19/sangue , Citocinas/sangue , Imunidade Inata/imunologia , Inflamação/sangue , Subunidade alfa de Receptor de Interleucina-2/sangue , Insuficiência de Múltiplos Órgãos/sangue , Pneumonia/sangue , Idoso , COVID-19/complicações , COVID-19/virologia , Feminino , Fator de Crescimento de Hepatócito/sangue , Interações Hospedeiro-Patógeno , Humanos , Inflamação/complicações , Interleucina-6/sangue , Fator Estimulador de Colônias de Macrófagos/sangue , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/complicações , Pneumonia/complicações , Pneumonia/virologia , Estudos Retrospectivos , SARS-CoV-2/fisiologia
20.
Front Immunol ; 12: 798276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987520

RESUMO

Effects of initiation of programmed-death-protein 1 (PD1) blockade during active SARS-CoV-2 infection on antiviral immunity, COVID-19 course, and underlying malignancy are unclear. We report on the management of a male in his early 40s presenting with highly symptomatic metastatic lung cancer and active COVID-19 pneumonia. After treatment initiation with pembrolizumab, carboplatin, and pemetrexed, the respiratory situation initially worsened and high-dose corticosteroids were initiated due to suspected pneumonitis. After improvement and SARS-CoV-2 clearance, anti-cancer treatment was resumed without pembrolizumab. Immunological analyses with comparison to otherwise healthy SARS-CoV-2-infected ambulatory patients revealed a strong humoral immune response with higher levels of SARS-CoV-2-reactive IgG and neutralizing serum activity. Additionally, sustained increase of Tfh as well as activated CD4+ and CD8+ T cells was observed. Sequential CT scans showed regression of tumor lesions and marked improvement of the pulmonary situation, with no signs of pneumonitis after pembrolizumab re-challenge as maintenance. At the latest follow-up, the patient is ambulatory and in ongoing partial remission on pembrolizumab. In conclusion, anti-PD1 initiation during active COVID-19 pneumonia was feasible and cellular and humoral immune responses to SARS-CoV-2 appeared enhanced in our hospitalized patient. However, distinguishing COVID-19-associated changes from anti-PD1-associated immune-related pneumonitis posed a considerable clinical, radiographic, and immunologic challenge.


Assuntos
Corticosteroides/uso terapêutico , Tratamento Farmacológico da COVID-19 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Adulto , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , COVID-19/complicações , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/imunologia , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/imunologia , Masculino , Metástase Neoplásica , Pneumonia/imunologia , Pneumonia/prevenção & controle , Pneumonia/virologia , SARS-CoV-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA